On the influence of “non-Redfield” dissolved organic nutrient dynamics on the spatial distribution of N2 fixation and the size of the marine fixed nitrogen inventory

نویسندگان

  • Christopher J. Somes
  • Andreas Oschlies
چکیده

Dissolved organic nitrogen (DON) and phosphorus (DOP) represent themost abundant formof their respective nutrient pool in the surface layer of the oligotrophic oceans and play an important role in nutrient cycling and productivity. Since DOP is generally more labile than DON, it provides additional P that may stimulate growth of nitrogen-fixing diazotrophs that supply fixed nitrogen to balance denitrification in the ocean. In this study, we introduce semirecalcitrant components of DON and DOP as state variables in an existing global ocean-atmosphere-sea ice-biogeochemistry model of intermediate complexity to assess their impact on the spatial distribution of nitrogen fixation and the size of the marine fixed nitrogen inventory. Large-scale surface data sets of global DON and Atlantic Ocean DOP are used to constrain the model. Our simulations suggest that both preferential DOP remineralization and phytoplankton DOP uptake are important “non-Redfield” processes (i.e., deviate from molar N:P = 16) that need to be accounted for to explain the observed patterns of DOP. Additional non-Redfield DOP sensitivity experiments testing dissolved organic matter (DOM) production rate uncertainties that best reproduce the observed spatial patterns of DON and DOP stimulate additional nitrogen fixation that increases the size of the global marine fixed nitrogen inventory by 4.7± 1.7% compared to the simulation assuming Redfield DOM stoichiometry that underestimates the observed nitrogen inventory. The extra 8 Tg yr 1 of nitrogen fixation stimulated in the Atlantic Ocean is mainly responsible for this increase due to its large spatial separation from water column denitrification, which buffers any potential nitrogen surplus in the Pacific Ocean. Our study suggests that the marine fixed nitrogen budget is sensitive to non-Redfield DOP dynamics because access to the relatively labile DOP pool expands the ecological niche for nitrogen-fixing diazotrophs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organic nutrients and excess nitrogen in the North Atlantic subtropical gyre

To enable an accurate estimate of total excess nitrogen (N) in the North Atlantic, a new tracer TNxs is defined, which includes the contribution of organic nutrients to the assessment of N:P stoichiometric anomalies. We measured the spatial distribution of TNxs within the subtropical North Atlantic using data from a trans-Atlantic section across 24.5 N occupied in 2004. We then employ three dif...

متن کامل

Magnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton

The elemental stoichiometry of sea water and particulate organic matter is remarkably similar. This observation led Redfield to hypothesize that the oceanic ratio of nitrate to phosphate is controlled by the remineralization of phytoplankton biomass1. The Redfield ratio is used universally to quantitatively link the marine nitrogen and phosphorus cycles in numerous biogeochemical applications2–...

متن کامل

Optimality-based model of phytoplankton growth and diazotrophy

The notion that excess phosphorus (P) and high irradiance favour pelagic diazotrophy is difficult to reconcile with diazotroph behaviour in laboratory experiments and also with the observed distribution of N2-fixing Trichodesmium, e.g. in the relatively nitrogen (N)-rich North Atlantic Ocean. Nevertheless, this view currently provides the stateof-the-art framework to understand both past dynami...

متن کامل

Dissolved Organic Matter Influences N2 Fixation in the New Caledonian Lagoon (Western Tropical South Pacific)

Specialized prokaryotes performing biological dinitrogen (N2) fixation (“diazotrophs”) provide an important source of fixed nitrogen in oligotrophic marine ecosystems such as tropical and subtropical oceans. In these waters, cyanobacterial photosynthetic diazotrophs are well known to be abundant and active, yet the role and contribution of non-cyanobacterial diazotrophs are currently unclear. T...

متن کامل

Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes

The magnitude of fluxes in the carbon cycle of subtropical and tropical marine habitats is determined by the supply of inorganic nutrients. These habitats have low sea-surface concentrations of nitrate (NO3) and chlorophyll (dubbed LNLC regions), sustain relatively low rates of organic matter production and export, and represent global ocean minima in carbon sequestration potential. The low NO3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015